Учреждение профессионального образования «Колледж Казанского инновационного университета» Альметьевский филиал

УТВЕРЖДЕН

в составе Основной образовательной программы – программы подготовки специалистов среднего звена протокол № 6 от «28» августа 2024 г.

Фонд оценочных средств по дисциплине ОП.10 ЧИСЛЕННЫЕ МЕТОДЫ

программы подготовки специалистов среднего звена

по специальности

09.02.07 Информационные системы и программирование (на базе основного общего образования)

Срок получения СПО по ППССЗ – 3 г.10 мес.

Форма обучения – очная

Присваиваемая квалификация программист

Общие положения

Фонд оценочных средств (ФОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу дисциплины ОП.10 Численные методы.

ФОС включает оценочные материалы для проведения текущего и промежуточного контроля.

ФОС разработан на основе:

- ООП программы подготовки специалистов среднего звена по специальности 09.02.07 Информационные системы и программирование;
 - рабочей программы учебной дисциплины ОП.10 Численные методы.

1. Паспорт фонда оценочных средств

В результате контроля и оценки по дисциплине осуществляется комплексная проверка следующих знаний и умений:

Результаты обучения	Критерии оценки
В результате освоения дисциплины обучающийся должен знать:	«Отлично» - теоретическое
специфику выбора оптимальных численных методов для решения поставленных задач; методы хранения чисел в памяти электронно-вычислительной машины (ЭВМ) и действия над ними, оценку точности	содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения
вычислений; численные методы решения алгебраических и трансцендентных уравнений, решения	оценено высоко.
систем линейных алгебраических уравнений, решения систем нелинейных	«Хорошо» - теоретическое содержание курса освоено
уравнений, интерполирования и аппроксимации функций,	полностью, без пробелов, некоторые умения
дифференцирования и интегрирования, решения обыкновенных дифференциальных	сформированы недостаточно, все предусмотренные
уравнений;	программой учебные задания выполнены, некоторые виды
методы численного решения поставленных задач с помощью современных	заданий выполнены с
информационных технологий; основы составления алгоритмов и программ	ошибками.

для решения вычислительных задач, с учетом необходимой точности получаемого результата

В результате освоения дисциплины обучающийся должен *уметь*:

выбирать оптимальный численный метод для решения поставленной задачи;

математические характеристики давать точности исходной информации и оценивать точность полученного численного решения; использовать численные методы решения алгебраических трансцендентных уравнений, решения систем линейных алгебраических уравнений, решения систем нелинейных уравнений, интерполирования и аппроксимации функций, интегрирования, решения обыкновенных дифференциальных уравнений;

использовать современные информационные технологии для численного решения поставленных задач;

разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата

«Удовлетворительно» теоретическое содержание курса освоено частично, пробелы не носят существенного характера, необходимые умения работы с освоенным материалом сформированы, основном большинство предусмотренных программой обучения учебных заданий выполнено, некоторые ИЗ выполненных заданий содержат ошибки.

«Неудовлетворительно» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

2. Распределение типов контрольных заданий по элементам знаний и умений в соответствии с компетенциями

Основной целью оценки освоения дисциплины является оценка умений и знаний в соответствии с формированием и развитием компетенций: ОК 01, ОК 02, ОК 03, ПК 1.1.

Оценка освоения умений и знаний осуществляется с использованием следующих форм и методов контроля: устный опрос, тестирование, решение задач, выполнение практических работ.

Содержание учебного материала	ОК 01	ОК 02	ОК 03	ПК 1.1
Тема 1.	Устный опрос	Устный опрос	Устный опрос	
Теория погрешностей	Решение задач	Решение задач	Решение задач	
	Тест	Тест	Тест	
Тема 2.	Практ. работа 1	Практ. работа 1	Практ. работа 1	Практ. работа 1
Численные методы решения	Тест	Тест	Тест	
алгебраических и трансцендентных уравнений				
Тема 3.	Практ. работа 2	Практ. работа 2	Практ. работа 2	Практ. работа 2
Численные методы решения систем	Тест	Тест	Тест	
линейных алгебраических уравнений				
Тема 4.	Практ. работа 3	Практ. работа 3	Практ. работа 3	Практ. работа 3
Численные методы решения систем	Тест	Тест	Тест	
нелинейных уравнений				
Тема 5.	Практ. работа 4	Практ. работа 4	Практ. работа 4	Практ. работа 4
Интерполирование функций				
Тема 6.	Устный опрос	Устный опрос	Устный опрос	Решение задач
Аппроксимация	Решение задач	Решение задач	Решение задач	
Тема 7.	Практ. работа 5	Практ. работа 5	Практ. работа 5	Практ. работа 5
Численное дифференцирование и				
интегрирование				
Тема 8.	Практ. работа 6	Практ. работа 6	Практ. работа 6	Практ. работа 6
Численные методы решения				
обыкновенных дифференциальных				
уравнений				

3. Задания для оценки освоения дисциплины

Задание 1: Устный опрос

Тема 1. Теория погрешностей

Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03.

Инструкция: подготовиться к устному опросу по заданным темам.

Вопросы для устного опроса:

- 1. Источники возникновения погрешности численного решения задачи.
- 2. Виды погрешностей.
- 3. Понятие абсолютной и относительной погрешности.
- 4. Значащие цифры числа. Верные значащие цифры.
- 5. Прямая и обратная задача теории погрешностей.

Критерии оценивания:

Оценка «**отлично**» — на вопросы даны исчерпывающие ответы, проиллюстрированные наглядными примерами там, где это необходимо. Ответы изложены грамотно, все термины употреблены корректно, все понятия раскрыты верно.

Оценка «**хорошо**» — на вопросы даны в целом верные ответы, но с отдельными неточностями, не носящими принципиального характера. Не все термины употреблены правильно, присутствуют отдельные некорректные утверждения. Ответы не проиллюстрированы примерами в должной мере.

Оценка «удовлетворительно» – ответы на вопросы носят фрагментарный верные неверными. Упущены характер, выводы перемежаются содержательные блоки, необходимые ДЛЯ полного раскрытия темы. Обучающийся в целом ориентируется в теме, но испытывает проблемы с раскрытием конкретных вопросов.

Оценка «неудовлетворительно» — ответы на вопросы отсутствуют либо не соответствуют содержанию вопросов. Ключевые для темы понятия, содержащиеся в вопросах, трактуются ошибочно.

Задание 2: Решение задач

Тема 1. Теория погрешностей

Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03.

Инструкция: решить предложенные задачи.

Текст задания:

Задача 1. Дано приближенное число a = 88,325 и известно, что у этого числа три верных значащих цифры в широком (узком) смысле. Оценить абсолютную и относительную погрешность в обоих случаях.

Задача 2. Со сколькими верными знаками в широком (узком) смысле следует вычислить $\sqrt{21} = 4,...$, чтобы:

- а) абсолютная погрешность не превышала 0,007;
- б) относительная погрешность не превышала 1%?

Задача 3. Дано число A = 82,003. Округлить его с точностью до 0,1. Определить абсолютную и относительную погрешности округления.

Задача 4. При взвешивании некоторых предметов получили следующие числа: x=0,5 г, y=1,3 г, z=5,3 г. Считая абсолютную погрешность взвешивания 0,0012, т.е. $\Delta x = \Delta y = \Delta z = 0,0012$ определить относительные погрешности предметов, т.е. $\delta x, \delta y, \delta z$.

Задача 5. При измерении некоторых расстояний получили числа: x=500м, y=350м, z=10м. Измерение производилось с относительной погрешностью 0,1%, т.е. $\delta x = \delta y = \delta z = 0,001$. Определить абсолютные погрешности чисел.

Задача 6. У приближенного числа a=2,87327 четыре цифры являются верными. Укажите возможное представление абсолютной погрешности этого числа.

Задача 7. Какова δa , если вместо числа $\pi = 3,1415$ взять 3,14.

Задача 8. Дано приближенное число 2,7182 и его абсолютная погрешность D = 0,007. Определить, какие значащие цифры приближенного числа будут верными в широком (узком) смысле.

Задача 9. Дистанция длиной в l=100 M отмерена с точностью $\Delta l=0,038 c M$. По секундомеру с точностью до $0,05 {\rm сеk}$ определили, что спортсмен пробежал эту дистанцию за $t=11,2 {\rm cek}$. Оценить абсолютную и относительную погрешности в подсчете средней скорости спортсмена, используя:

- а) формулу предельной абсолютной погрешности;
- б) формулу предельной относительной погрешности/

Критерии оценивания:

Оценка «**отлично**» — если обучающийся правильно выполнил все предложенные задания.

Оценка «**хорошо**» — если обучающийся правильно выполнил большинство предложенных заданий, при этом в работе могут присутствовать мелкие ошибки.

Оценка **«удовлетворительно»** — если обучающийся выполнил более половины предложенных заданий, при этом в работе могут присутствовать негрубые ошибки.

Оценка **«неудовлетворительно»** — если обучающийся выполнил менее половины предложенных заданий, при этом в работе могут присутствовать грубые ошибки.

Задание 3: Практическая работа 1

Тема 2. Численные методы решения алгебраических и трансцендентных уравнений

Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03, ПК 1.1.

Инструкция: выполнить предложенные задания и оформить отчет о проделанной работе.

Текст задания:

Отделить корни уравнения графически и уточнить один из них с точностью до 0.001 методами:

- а) половинного деления;
- б) касательных;
- в) простой итерации.

Вариант	Уравнение	Вариант	Уравнение
1	$\ln x + \left(x+1\right)^3 = 0;$	14	$3x - e^x = 0;$
2	$x \cdot 2^x = 1;$	15	$x(x+1)^2 = 1;$
3	$\sqrt{x+1} = \frac{1}{x};$	16	$x = \left(x+1\right)^3;$
4	$x - \cos x = 0;$	17	$x^2 = \sin x;$
5	$3x + \cos x + 1 = 0;$	18	$x^3 = \sin x;$
6	$x + \ln x = 0,5;$	19	$x = \sqrt{\lg(x+2)};$
7	$2 - x = \ln x;$	20	$x^2 = \ln(x+1);$
8	$(x-1)^2 = \frac{1}{2}e^x;$	21	$2x + \lg x = -0,5;$
9	$(2-x)e^x = 0,5;$	22	$2x + \cos x = 0,5;$
10	$2, 2x - 2^x = 0;$	23	$\sin 0.5x + 1 = x^2; x > 0;$
11	$x^2 + 4\sin x = 0;$	24	$0.5x + \lg(x-1) = 0.5;$
12	$2x - \lg x = 7;$	25	$\sin\left(0,5+x\right) = 2x - 0,5$
13	$5x - 8\ln x = 8;$		

Критерии оценивания:

Оценка «**отлично**» — если обучающийся правильно выполнил все предложенные задания и составил по выполненной работе полный отчет.

Оценка «**хорошо**» — если обучающийся правильно выполнил большинство предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать мелкие ошибки.

Оценка **«удовлетворительно»** — если обучающийся выполнил более половины предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать негрубые ошибки.

Оценка **«неудовлетворительно»** — если обучающийся выполнил менее половины предложенных заданий, при этом в работе могут присутствовать грубые ошибки, по выполненной работе отчет либо не составлен, либо составлен с грубыми ошибками.

Задание 4: Практическая работа 2

Тема 3. Численные методы решения систем линейных алгебраических уравнений

Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03, ПК 1.1.

Инструкция: выполнить предложенные задания и оформить отчет о проделанной работе.

Текст задания:

С точностью 0,001 решить систему линейных уравнений методами:

- а) простых итераций;
- б) Гаусса-Зейделя.

Вариант	Система линейных уравнений
1	$\left[2,7x_1+3,3x_2+1,3x_3=2,1;\right.$
	$\left\{3,5x_1-1,7x_2+2,8x_3=1,7;\right.$
	$4.1x_1 - 5.8x_2 + 1.7x_3 = 0.8.$
2	$\begin{cases} 1,7x_1 + 2,8x_2 + 1,9x_3 = 0,7; \end{cases}$
	$\left\{2,1x_1+3,4x_2+1,8x_3=1,7;\right.$
	$4,2x_1-1,7x_2+1,3x_3=2,8.$
3	$\left(3,1x_1+2,8x_2+1,9x_3=0,2;\right.$
	$\left\{1,9x_1+3,1x_2+2,1x_3=2,1;\right.$
	$7,5x_1 + 3,8x_2 + 4,8x_3 = 5,6.$
4	$9.1x_1 + 5.6x_2 + 7.8x_3 = 9.8;$
	$\begin{cases} 3.8x_1 + 5.1x_2 + 2.8x_3 = 6.7; \end{cases}$
	$4,1x_1 - 5,8x_2 + 1,7x_3 = 5,8.$
5	$\left(3,3x_1+2,1x_2+2,8x_3=0,8;\right.$
	$\begin{cases} 4,1x_1+3,7x_2+4,8x_3=5,7; \end{cases}$
	$2,7x_1+1,8x_2+1,1x_3=3,2.$

6	
	$\begin{cases} 3.8x_1 + 4.1x_2 + 2.7x_3 = 9.7; \end{cases}$
	$2,9x_1 + 2,1x_2 + 3,8x_3 = 7,8.$
7	$(3,2x_1-2,5x_2+3,7x_3=6,5;$
	$\begin{cases} 0.5x_1 + 0.34x_2 + 1.7x_3 = -0.24; \end{cases}$
	$1,6x_1+2,3x_2-1,5x_3=4,3.$
8	$\left(5,4x_1-2,3x_2+3,4x_3=-3,5;\right)$
	$\begin{cases} 4,2x_1+1,7x_2+2,3x_3=2,7; \end{cases}$
	$3,4x_1+2,4x_2+7,4x_3=1,9.$
9	$\left(3,6x_1+1,8x_2-4,7x_3=3,8;\right)$
	$\begin{cases} 2,7x_1 - 3,6x_2 + 1,9x_3 = 0,4; \end{cases}$
	$1,5x_1 + 4,5x_2 + 3,3x_3 = -1,6.$
10	$\left(5,6x_1+2,7x_2-1,7x_3=1,9;\right.$
	$\begin{cases} 3,4x_1 - 3,6x_2 - 6,7x_3 = -2,4; \end{cases}$
	$0.8x_1 + 1.3x_2 + 3.7x_3 = 1.2.$
11	$\left(2,7x_1+0,9x_2-1,5x_3=3,5;\right.$
	$\left\{4,5x_1-2,8x_2+6,7x_3=2,6;\right.$
	$5,1x_1+3,7x_2-1,4x_3=-1,14.$
12	$\left\{24,5x_1-3,5x_2+7,4x_3=2,5;\right\}$
	$\begin{cases} 3,1x_1 - 0,6x_2 - 2,3x_3 = -1,5; \end{cases}$
	$0.8x_1 + 7.4x_2 - 0.5x_3 = 6.4.$
13	$\left[3,8x_1+6,7x_2-1,2x_3=5,2;\right]$
	$\begin{cases} 6,4x_1+1,3x_2-2,7x_3=3,8; \end{cases}$
	$2,4x_1 - 4,5x_2 + 3,5x_3 = -0,6.$
14	$\left(5,4x_1-6,2x_2-0,5x_3=0,52;\right)$
	$\begin{cases} 3,4x_1+2,3x_2+0,8x_3=-0,8; \end{cases}$
	$2,4x_1-1,1x_2+3,8x_3=1,8.$
15	$\left(1,5x_1+2,3x_2-3,7x_3=4,5;\right)$
	$\begin{cases} 2,8x_1+3,4x_2+5,8x_3=-3,2; \end{cases}$
	$\left[1,2x_1+7,3x_2-2,3x_3=5,6.\right]$

16	$\left[3,8x_1+4,1x_2-2,3x_3=4,8;\right]$
	$\left\{-2,1x_1+3,9x_2-5,8x_3=3,3;\right.$
	$1,8x_1 - 1,1x_2 - 2,1x_3 = 5,8.$
17	$\left(1,7x_1-2,2x_2+3,0x_3=1,8;\right)$
	$\begin{cases} 2,1x_1+1,9x_2-2,3x_3=2,8; \end{cases}$
	$4,2x_1+3,9x_2-3,1x_3=5,1.$
18	$\left(2,8x_1+3,8x_2-3,2x_3=4,5;\right.$
	$\left\{2,5x_1-2,8x_2+3,3x_3=7,1;\right.$
	$6.5x_1 - 7.1x_2 + 4.8x_3 = 6.3.$
19	$3,3x_1 + 3,7x_2 + 4,2x_3 = 5,8;$
	$\left\{2,7x_1+2,3x_2-2,9x_3=6,1;\right.$
	$4.1x_1 + 4.8x_2 - 5.0x_3 = 7.0.$
20	$7,1x_1+6,8x_2+6,1x_3=7,0;$
	$\begin{cases} 5,0x_1 + 4,8x_2 + 5,3x_3 = 6,1; \end{cases}$
	$8,2x_1+7,8x_2+7,1x_3=5,8.$
21	$\left(3,7x_1+3,1x_2+4,0x_3=5,0;\right)$
	$\left\{4,1x_1+4,5x_2-4,8x_3=4,9;\right.$
	$-2,1x_1 - 3,7x_2 + 1,8x_3 = 2,7.$
22	$\begin{cases} 4,1x_1 + 5,2x_2 - 5,8x_3 = 7,0; \end{cases}$
	$\begin{cases} 3.8x_1 - 3.1x_2 + 4.0x_3 = 5.3; \end{cases}$
	$7,8x_1+5,3x_2-6,3x_3=5,8.$
23	$\int 3.7x_1 - 2.3x_2 + 4.5x_3 = 2.4;$
	$\left\{2,5x_1+4,7x_2-7,8x_3=3,5;\right.$
	$1,6x_1+5,3x_2+1,3x_3=-2,4.$
24	$\left(6,3x_1+5,2x_2-0,6x_3=1,5;\right)$
	$\begin{cases} 3,4x_1-2,3x_2+3,4x_3=2,7; \end{cases}$
	$0.8x_1 + 1.4x_2 + 3.5x_3 = -2.3.$
25	$\left(1,5x_1+2,3x_2-3,7x_3=4,5;\right.$
	$\left\{2,8x_1+3,4x_2+5,8x_3=-3,2;\right.$
	$1,2x_1+7,3x_2-2,3x_3=5,6.$

Оценка «**отлично**» — если обучающийся правильно выполнил все предложенные задания и составил по выполненной работе полный отчет.

Оценка «**хорошо**» — если обучающийся правильно выполнил большинство предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать мелкие ошибки.

Оценка **«удовлетворительно»** — если обучающийся выполнил более половины предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать негрубые ошибки.

Оценка **«неудовлетворительно»** — если обучающийся выполнил менее половины предложенных заданий, при этом в работе могут присутствовать грубые ошибки, по выполненной работе отчет либо не составлен, либо составлен с грубыми ошибками.

Задание 5: Практическая работа 3

Тема 4. Численные методы решения систем нелинейных уравнений Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03, ПК 1.1.

Инструкция: выполнить предложенные задания и оформить отчет о проделанной работе.

Текст задания:

Решить систему нелинейных уравнений с точностью до 0,001 используя:

- 1) метод простых итераций;
- 2) метод Ньютона-Рафсона.

Вариант	Уравнение	Вариант	Уравнение
1	$\begin{cases} \sin(x+1) - y = 1, 2; \\ 2x + \cos y = 2. \end{cases}$	14	$\begin{cases} \cos y + x = 1, 5; \\ 2y - \sin(x - 0, 5) = 1. \end{cases}$
2	$\begin{cases} \cos(x-1) + y = 0,5; \\ x - \cos y = 3. \end{cases}$	15	$\begin{cases} \sin(y+0.5) - x = 1; \\ \cos(x-2) + y = 0. \end{cases}$
3	$\begin{cases} \sin x + 2y = 2; \\ \cos(y-1) + x = 0, 7. \end{cases}$	16	$\begin{cases} \cos(y+0.5) + x = 0.8; \\ \sin x - 2y = 1.6. \end{cases}$
4	$\begin{cases} \cos x + y = 1,5; \\ 2x - \sin(y - 0,5) = 1. \end{cases}$	17	$\begin{cases} \sin(y-1) + x = 1, 3; \\ y - \sin(x+1) = 0, 8. \end{cases}$
5	$\begin{cases} \sin(x+0.5) - y = 1; \\ \cos(y-2) = x = 0. \end{cases}$	18	$\begin{cases} 2x - \cos(y+1) = 0; \\ y + \sin x = -0, 4. \end{cases}$
6	$\begin{cases} \cos(x+0.5) + y = 0.8; \\ \sin y - 2x = 1.6. \end{cases}$	19	$\begin{cases} \cos(y+0,5) - x = 2; \\ \sin x - 2y = 1. \end{cases}$

7	$\begin{cases} \sin(x-1) = 1, 3 - y; \\ x - \sin(y+1) = 0, 8. \end{cases}$	20	$\begin{cases} \sin(y+2) - x = 1,5; \\ y + \cos(x-2) = 0,5. \end{cases}$
8	$\begin{cases} 2y - \cos(x+1) = 0; \\ x + \sin y = -0, 4. \end{cases}$	21	$\begin{cases} \sin(x+1) - y = 1; \\ 2x + \cos y = 2. \end{cases}$
9	$\begin{cases} \cos(x+0.5) - y = 2; \\ \sin y - 2x = 1. \end{cases}$	22	$\begin{cases} \cos(x-1) + y = 0.8; \\ x - \cos y = 2. \end{cases}$
10	$\begin{cases} \sin(x+2) - y = 1,5; \\ x + \cos(y-2) = 0,5. \end{cases}$	23	$\begin{cases} \sin x + 2y = 1, 6; \\ \cos(y - 1) + x = 1. \end{cases}$
11	$\begin{cases} \sin(y+1) - x = 1, 2; \\ 2y + \cos x = 2. \end{cases}$	24	$\begin{cases} \cos x + y = 1, 2; \\ 2x - \sin(y - 0, 5) = 2. \end{cases}$
12	$\begin{cases} \cos(y-1) + x = 0,5; \\ y - \cos x = 3. \end{cases}$	25	$\begin{cases} \sin(x+0.5) - y = 1.2; \\ \cos(y-2) + x = 0. \end{cases}$
13	$\begin{cases} \sin y + 2x = 2; \\ \cos(x-1) + y = 0,7. \end{cases}$		

Оценка «**отлично**» — если обучающийся правильно выполнил все предложенные задания и составил по выполненной работе полный отчет.

Оценка «**хорошо**» — если обучающийся правильно выполнил большинство предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать мелкие ошибки.

Оценка **«удовлетворительно»** — если обучающийся выполнил более половины предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать негрубые ошибки.

Оценка **«неудовлетворительно»** — если обучающийся выполнил менее половины предложенных заданий, при этом в работе могут присутствовать грубые ошибки, по выполненной работе отчет либо не составлен, либо составлен с грубыми ошибками.

Задание 6: Тест по темам 1-4

Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03.

Инструкция: выбрать правильный ответ.

- 1. Уравнение $\sin 2x \ln x = 0$ имеет единственный корень на отрезке...
- a) [1; 1.5];
- б) [0; 0.5];

- в) [-1;1];
- г) [-1; 0.5].
- 2. Если определитель системы линейных уравнений равен нулю, то...
- а) решение можно получить только численно;
- б) единственного решения нет;
- в) может быть бесконечное множество решений;
- г) решение зависит от точности методов.
- 3. Численный метод Гаусса-Зейделя для решения системы линейных уравнений является...
 - а) прямым;
 - б) итерационным;
 - в) неявным;
 - г) явным.
- 4. Пусть a=2,91385 и $\Delta a=0,0097$. Тогда в числе a верны в широком смысле...
 - a) 2,9,1;
 - б) 2,9;
 - 9,1;
 - г) все цифры.
- 5. Приближенным числом a называют число, незначительно отличающиеся от...
 - а) точного А;
 - б) неточного А;
 - в) среднего А;
 - г) точного не известного.
 - 6. Для решения уравнений с одним неизвестным служит метод...
 - а) трапеций;
 - б) Эйлера;
 - в) итераций;
 - г) Рунге-Кутта.
- 7. Под ошибкой или погрешностью Δa приближенного числа а обычно понимается разность между соответствующим точным числом A и данным приближением, то есть...

a)
$$\Delta a = A - a$$
;

- δ) Δa = A + a;
- B) $\Delta a = A/a$;
- Γ) $a = \Delta a A$.
- 8. Абсолютная погрешность равна...
- a) $\Delta = |A a|$;
- δ) ΔA = a;
- B) $\Delta = |B a|$;
- Γ) a = |A + a|.
- 9. Из перечисленных методов служат для решения системы линейных алгебраических уравнений...
 - а) прямоугольников;
 - б) Зейделя;
 - в) конечных разностей;
 - г) Гаусса.
 - 10. Задача отделения корней заключается в...
 - а) в установлении количества корней;
- б) в установлении количества корней, а так же наиболее тесных промежутков, каждый из которых содержит только один корень;
 - в) в установлении корня решения уравнения;
 - г) в назначении количества корней.

- 1. Погрешность разности чисел x=62,425 и y=62,409, у которых все числа верны в узком смысле, равна...
 - a) 0,09;
 - б) 1;
 - в) 0,07;
 - r) 0,12.
- 2. Если абсолютная погрешность числа не превосходит единицы этого разряда, то некоторая цифра приближённого числа называется...
 - а) сомнительной;
 - б) верной;
 - в) абсолютной;
 - г) относительной.

- 3. Если a=142.5, $\Delta a=0.05$, то граница относительной погрешности...
- a) 0,03%;
- б) 0,3%;
- в) 0,003%;
- г) 0,0003%.
- 4. Нелинейное уравнение задано в виде $x=\varphi(x)$. Тогда условием сходимости метода простой итерации будет условие...
 - а) $\phi(x)$ –непрерывная функция;
 - 6) $2 < \varphi'(x) < -1$;
 - B) $\varphi'(x) \cdot \varphi''(x) > 0$;
 - Γ) $|\varphi'(x)| < 1$.
- 5. Решением системы линейных уравнений $\left\{ \begin{array}{ll} 2,34x_1-4,21x_2-11,61x_3=14,41 \\ 8,04x_1+5,22x_2+0,27x_3=-6,44 \ \mbox{будет}... \\ 3,92x_1-7,99x_2+8,37x_3=55,56 \end{array} \right.$
 - a) (0,967; -4,816; 2,293);
 - б) (0;0;0);
 - в) (0,25;0,15;-0,12);
 - г) (-11;0;2).
- 6. Формула метода Ньютона для нелинейного уравнения F(x) = 0 имеет вид...
 - a) $x_{k+1} = F(x_k);$
 - 6) $x_{k+1} = x_k (1 F(x_k));$
 - B) $x_{k+1} = x_k + F'(x_k) / F(x_k)$;
 - Γ) $x_{k+1} = x_k F(x_k) / F'(x_k)$.
 - 7. Число π =3,1415926535 округленное до пяти значащих цифр равно...
 - a) 3,1416;
 - б) 3,1425;
 - в) 3,142;
 - г) 3,14.
- 8. Задано нелинейное уравнение вида x3 + 2x 1 = 0 и отрезок [0; 1], на котором находится корень. Один шаг метода половинного деления дает отрезок
 - a) [0,25; 1];
 - б) [0,5; 1];

- в) [0,25; 0,75];
- Γ) [0; 0,5].
- 9. Алгоритм называется неустойчивым, если...
- а) малые изменения исходных данных не изменяют окончательный результат;
- б) большие изменения в исходных данных не изменяют окончательный результат;
- в) большие изменения в исходных данных приводят к малому изменению результата;
- г) малые изменения исходных данных и погрешности округления приводят к значительному изменению окончательных результатов.
- 10. Дано нелинейное уравнение $\cos 2x 2x + \pi/4 = 0$ и начальное условие $x0 = \pi/4$. Первое приближение метода Ньютона x_1 будет равно...
 - a) $\pi/2$;
 - б) $3\pi/16$;
 - B) $5\pi/16$;
 - Γ) $3\pi/4$.

- 1. Если a=945,673, $\Delta a=0,03$, то цифра 6 является...
- а) сомнительной;
- б) верной;
- в) абсолютной;
- г) относительной.
- 2. Для решения уравнений с одним неизвестным служит метод...
- а) прямоугольника;
- б) Симпсона;
- в) касательных;
- г) Бернулли.
- 3. Итерационный метод решения нелинейного уравнения F(x)=0 по формуле $x_{k+1}=x_k-F(x_k)\,/\,F'(x_k)$ называется методом...
 - а) простой итерации;
 - б) секущих;
 - в) Ньютона;
 - г) половинного деления.

4.	Один шаг метода половинного деления для уравнения $x^2 - 2 = 0$ для
начальног	го отрезка [0; 2] дает следующий отрезок
a) [0); 1];
б) [1	1; 2];
в) [(0,5;1];
г) [1	,5; 2].

- 5. Если определитель системы линейных уравнений равен нулю, то...
- а) решение можно получить только численно;
- б) единственного решения нет;
- в) может быть бесконечное множество решений;
- г) решение зависит от точности методов.
- 6. Задано нелинейное уравнение вида $\ln x + x 0,5=0$ и начальное приближение x0 = 1. Один шаг метода Ньютона дает
 - a) $x_1 = 0.75$;
 - 6) $x_1 = 1,25$;
 - B) $x_1 = 1.5$;
 - Γ) $x_1 = 0.5$.
- 7. Для решения системы линейных алгебраических уравнений служит метод...
 - а) прямоугольников;
 - б) Зейделя;
 - в) конечных разностей;
 - г) Эйлера.
- 8. Условие сходимости метода итераций для уравнения $x = \phi(x)$ заключается в том, что...
 - a) $\varphi'(x) > x$;
 - 6) $\varphi'(x) < 1$;
 - $_{\mathrm{B}}) |\varphi'(x)| < 1;$
 - Γ) $\varphi'(x) > 0$.
- 9. Дано нелинейное уравнение $x^2 \sin x + 1 = 0$ и начальное приближение $x_0 = 0$. Первое приближение x_1 в методе Ньютона равно...
 - a) -1;
 - б) 1;

- B) 0,5;
- г) 0,1.
- 10. Дано уравнение $x = \sin x + 1$ и начальное приближение $x_0 = \pi / 2$. Первое приближение x_1 метода простой итераций равно...
 - a) 0;
 - б) 1;
 - в) 2;
 - Γ) π.

- 1. Отделить корни при решении нелинейного уравнения F(x)=0 это значит...
 - а) отделить положительные корни от отрицательных;
 - б) для каждого корня указать область притяжения;
 - в) для каждого корня указать интервал, в котором он будет единственным;
 - г) расставить корни в порядке их возрастания.
- 2. Дано уравнение x^3 x=0 и начальное приближение $x_0=1$. Результат одного шага метода Ньютона равен...
 - a) $x_1 = 1$;
 - 6) $x_1 = 0.5$;
 - B) $x_1 = 2$;
 - Γ) $x_1 = -1$.
- 3. Задано нелинейное уравнение вида $x = x^3 2x$ и начальное приближение $x_0 = 2$. Один шаг метода простой итерации дает...
 - a) $x_1 = 1$;
 - 6) $x_1 = 2.5$;
 - B) $x_1 = 4$;
 - Γ) $x_1 = 10$.
- 4. Уравнение записано в виде, удобном для итераций $x=0.5\cos 2x + \pi/8$. Первое приближение метода простой итерации x_1 для начального приближения $x_0=\pi/4$ равно...
 - a) $\pi/8$;
 - $6) \pi/4;$
 - B) $3\pi/4$;
 - Γ) $3\pi/8$.

- 5. Метод бисекций иначе называется...
- а) методом простых итераций;
- б) методом касательных;
- в) методом Эйлера;
- г) методом половинного деления.
- 6. Для решения уравнений с одним неизвестным используется метод...
- а) половинного деления;
- б) Эйлера;
- в) Симпсона;
- г) Рунге-Кутта.
- 7. Из перечисленных методов для решения системы линейных алгебраических уравнений служит метод...
 - а) прямоугольников;
 - б) Зейделя;
 - в) конечных разностей;
 - г) Рунге-Кутта.
 - 8. Абсолютная погрешность равенства $\frac{1}{3} \approx 0.33$ равна...
 - a) 0,0033;
 - б) 0,0029;
 - в) 0,014;
 - г) 0,00018.
- 9. Запись нелинейного уравнения в виде $x = \phi(x)$ требуется при решении его численным методом...
 - а) простой итерации;
 - б) Гаусса;
 - в) половинного деления;
 - г) Ньютона.
- 10. Итерационный метод решения нелинейного уравнения F(x) = 0 по формуле $x_{k+1} = x_k F(x_k) \, / \, F'(x_k)$ называется методом...
 - а) простой итерации;
 - б) секущих;

- в) Ньютона;
- г) половинного деления.

Оценка **«отлично»** — если обучающийся правильно ответил на все вопросы в отведенное время.

Оценка **«хорошо»** — если обучающийся правильно ответил на 8-9 вопросов в отведенное время.

Оценка **«удовлетворительно»** – если обучающийся правильно ответил на 6-7 вопросов в отведенное время.

Оценка **«неудовлетворительно»** — если обучающийся правильно ответил на менее 6 вопросов в отведенное время.

Время выполнения: 30 мин.

Задание 7: Практическая работа 4

Тема 5. Интерполирование функций

Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03, ПК 1.1.

Инструкция: выполнить предложенные задания и оформить отчет о проделанной работе.

Текст задания:

Найти приближенное значение функции при данном значении аргумента с помощью:

- 1) интерполяционного многочлена Лагранжа;
- 2) интерполяционной формулы Ньютона.

Вариант	Функция		Данное значение
			аргумента
1	\mathcal{X}	у	0,702
	0,43	1,63597	
	0,48	1,73234	
	0,55	1,87686	
	0,62	2,03345	
	0,70	2,22846	
	0,75	2,35973	

2	X	y	0,102
	0,02	1,02316	
	0,08	1,09590	
	0,12	1,14725	
	0,17	1,21483	
	0,23	1,30120	
	0,30	1,40976	
3	X	у	0,526
	0,35	2,73951	
	0,41	2,30080	
	0,47	1,96864	
	0,51	1,78776	
	0,56	1,59502	
	0,64	1,34310	
4	X	у	0,616
	0,41	2,57418	
	0,46	2,32513	
	0,52	2,09336	
	0,60	1,86203	
	0,65	1,74926	
	0,72	1,62098	
5	X	у	0,896
	0,68	0,80866	
	0,73	0,89492	
	0,80	1,02964	
	0,88	1,20966	
	0,93	1,34087	
	0,99	1,52368	
6	X	у	0,314
	0,11	9,05421	
	0,15	6,61659	
	0,21	4,69170	
	0,29	3,35106	
	0,35	2,73951	
	0,40	2,36522	

7	x	у	0,512
	0,43	1,63597	- 7-
	0,48	1,73234	
	0,55	1,87686	
	0,62	2,03345	
	0,70	2,22846	
	0,75	2,35973	
8	X	y	0,114
	0,02	1,02316	
	0,08	1,09590	
	0,12	1,14725	
	0,17	1,21483	
	0,23	1,30120	
	0,30	1,40976	
9	X	y	0,453
	0,35	2,73951	
	0,41	2,30080	
	0,47	1,96864	
	0,51	1,78776	
	0,56	1,59502	
	0,64	1,34310	
10	X	у	0,478
	0,41	2,57418	
	0,46	2,32513	
	0,52	2,09336	
	0,60	1,86203	
	0,65	1,74926	
	0,72	1,62098	
11	X	у	0,812
	0,68	0,80866	
	0,73	0,89492	
	0,80	1,02964	
	0,88	1,20966	
	0,93	1,34087	
	0,99	1,52368	
12	X	y	0,235

	0,11	9,05421	
	0,15	6,61659	
	0,21	4,69170	
	0,29	3,35106	
	0,35	2,73951	
	0,40	2,36522	
13	X	у	1,3862
	0,43	1,63597	
	0,48	1,73234	
	0,55	1,87686	
	0,62	2,03345	
	0,70	2,22846	
	0,75	2,35973	
14	x	y	0,1232
	0,02	1,02316	
	0,08	1,09590	
	0,12	1,14725	
	0,17	1,21483	
	0,23	1,30120	
	0,30	1,40976	
15	X	y	0,1662
	0,35	2,73951	
	0,41	2,30080	
	0,47	1,96864	
	0,51	1,78776	
	0,56	1,59502	
	0,64	1,34310	
16	X	у	0,1944
	0,41	2,57418	
	0,46	2,32513	
	0,52	2,09336	
	0,60	1,86203	
	0,65	1,74926	
	0,72	1,62098	
17	x	у	0,2232
	0,68	0,80866	
·			

0,73 0,89492 0,80 1,02964 0,98 1,20966 0,93 1,34087 0,99 1,52368 18 x y 0,11 9,05421 0,15 6,61659 0,21 4,69170 0,29 3,35106 0,35 2,73951 0,40 2,36522 19 x y 0,43 1,63597 0,48 1,73234 0,55 1,87686 0,62 2,03345 0,70 2,22846 0,70 2,22846 0,75 2,35973 20 x y 0,02 1,02316 0,08 1,09590 0,12 1,14725 0,17 1,21483 0,23 1,30120 0,30 1,40976 21 x y 0,35 2,73951 0,41 2,30080 <td< th=""><th></th><th></th><th></th><th></th></td<>				
0,88 1,20966 0,93 1,34087 0,99 1,52368 18 x y 0,11 9,05421 0,15 6,61659 0,21 4,69170 0,29 3,35106 0,35 2,73951 0,40 2,36522 19 x y 0,43 1,63597 0,48 1,73234 0,55 1,87686 0,62 2,03345 0,70 2,22846 0,75 2,35973 20 x y 0,02 1,02316 0,08 1,09590 0,12 1,14725 0,17 1,21483 0,23 1,30120 0,30 1,40976 21 x y 0,35 2,73951 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 <td< td=""><td></td><td>0,73</td><td>0,89492</td><td></td></td<>		0,73	0,89492	
0,93 1,34087 0,99 1,52368 18 x y 1,4396 0,11 9,05421 1,4396 0,15 6,61659 0,21 4,69170 0,29 3,35106 0,35 2,73951 0,40 2,36522 0,736 19 x y 0,736 0,48 1,73234 0,55 1,87686 0,62 2,03345 0,70 2,22846 0,70 2,22846 0,75 2,35973 20 x y 0,203 0,02 1,02316 0,08 1,09590 0,12 1,14725 0,17 1,21483 0,23 1,30120 0,30 1,40976 21 x y 0,552 0,35 2,73951 0,41 2,30080 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 2 22 x y 0,537 0,41 2,57418 0,537		0,80	1,02964	
18		0,88	1,20966	
18 x y 1,4396 0,11 9,05421 1,015 6,61659 0,21 4,69170 0,29 3,35106 0,35 2,73951 0,40 2,36522 19 x y 0,736 0,43 1,63597 0,48 1,73234 0,55 1,87686 0,62 2,03345 0,70 2,22846 0,70 2,22846 0,75 2,35973 0,203 20 x y 0,203 0,02 1,02316 0,08 0,12 0,17 1,21483 0,23 0,30120 0,30 1,40976 0,35 2,73951 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 0,537 22 x y 0,537 0,41 2,57418 0,537		0,93	1,34087	
0,11 9,05421 0,15 6,61659 0,21 4,69170 0,29 3,35106 0,35 2,73951 0,40 2,36522 19 x y 0,736 0,43 1,63597 0,48 1,73234 0,55 1,87686 0,62 2,03345 0,70 2,22846 0,75 2,35973 20 x y 0,203 0,02 1,02316 0,08 1,09590 0,12 1,14725 0,17 1,21483 0,23 1,30120 0,30 1,40976 21 x y 0,552 0,35 2,73951 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,537 0,41 2,57418 0,537		0,99	1,52368	
0,15 6,61659 0,21 4,69170 0,29 3,35106 0,35 2,73951 0,40 2,36522 19 x y 0,43 1,63597 0,48 1,73234 0,55 1,87686 0,62 2,03345 0,70 2,22846 0,75 2,35973 20 x y 0,02 1,02316 0,08 1,09590 0,12 1,14725 0,17 1,21483 0,23 1,30120 0,30 1,40976 21 x y 0,35 2,73951 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,537	18	X	у	1,4396
0,21 4,69170 0,29 3,35106 0,35 2,73951 0,40 2,36522 19 x y 0,736 0,43 1,63597 0,48 1,73234 0,55 1,87686 0,62 2,03345 0,70 2,22846 0,770 2,22846 0,075 2,35973 0,203 20 x y 0,203 0,02 1,02316 0,08 1,09590 0,12 1,14725 0,17 1,21483 0,23 1,30120 0,30 1,40976 21 x y 0,552 0,35 2,73951 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,537 0,41 2,57418 0,537		0,11	9,05421	
0,29 3,35106 0,35 2,73951 0,40 2,36522 19 x y 0,736 0,43 1,63597 0,48 1,73234 0,55 1,87686 0,62 2,03345 0,70 2,22846 0,75 2,35973 20 x y 0,203 0,02 1,02316 0,08 1,09590 0,12 1,14725 0,17 1,21483 0,23 1,30120 0,30 1,40976 21 x y 0,552 0,35 2,73951 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,537 0,41 2,57418 0,537		0,15	6,61659	
0,35 2,73951 0,40 2,36522 19 x y 0,43 1,63597 0,48 1,73234 0,55 1,87686 0,62 2,03345 0,70 2,22846 0,75 2,35973 20 x y 0,02 1,02316 0,08 1,09590 0,12 1,14725 0,17 1,21483 0,23 1,30120 0,30 1,40976 21 x y 0,35 2,73951 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,537 0,41 2,57418		0,21	4,69170	
0,40 2,36522 19 x y 0,736 0,43 1,63597 0,48 1,73234 0,55 1,87686 0,62 2,03345 0,70 2,22846 0,75 2,35973 20 x y 0,203 0,02 1,02316 0,08 1,09590 0,12 1,14725 0,17 1,21483 0,23 1,30120 0,30 1,40976 21 x y 0,552 0,35 2,73951 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,537 0,41 2,57418 0,537		0,29	3,35106	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,35	2,73951	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,40	2,36522	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	X	у	0,736
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,43	1,63597	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,48	1,73234	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,55	1,87686	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,62	2,03345	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,70	2,22846	
0,02 1,02316 0,08 1,09590 0,12 1,14725 0,17 1,21483 0,23 1,30120 0,30 1,40976 21 x y 0,552 0,35 2,73951 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,537 0,41 2,57418 0,537		0,75	2,35973	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	x	у	0,203
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,02	1,02316	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,08	1,09590	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,12	1,14725	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,17	1,21483	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,23	1,30120	
0,35 2,73951 0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,41 2,57418		0,30	1,40976	
0,41 2,30080 0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,537 0,41 2,57418	21	x	у	0,552
0,47 1,96864 0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,537 0,41 2,57418		0,35	2,73951	
0,51 1,78776 0,56 1,59502 0,64 1,34310 22 x y 0,537 0,41 2,57418		0,41	2,30080	
0,56 1,59502 0,64 1,34310 22 x y 0,537 0,41 2,57418		0,47	1,96864	
0,64 1,34310 22 x y 0,537 0,41 2,57418		0,51	1,78776	
22 x y 0,537 0,41 2,57418		0,56	1,59502	
0,41 2,57418		0,64	1,34310	
	22	X	у	0,537
0.46 2.32513		0,41	2,57418	
2,32010		0,46	2,32513	

	0,52	2,09336	
	0,60	1,86203	
	0,65	1,74926	
	0,72	1,62098	
23	х	у	0,955
	0,68	0,80866	
	0,73	0,89492	
	0,80	1,02964	
	0,88	1,20966	
	0,93	1,34087	
	0,99	1,52368	
24	x	y	0,275
	0,11	9,05421	
	0,15	6,61659	
	0,21	4,69170	
	0,29	3,35106	
	0,35	2,73951	
	0,40	2,36522	
25	X	y	1,38
	0,43	1,63597	
	0,48	1,73234	
	0,55	1,87686	
	0,62	2,03345	
	0,70	2,22846	
	0,75	2,35973	

Оценка «**отлично**» — если обучающийся правильно выполнил все предложенные задания и составил по выполненной работе полный отчет.

Оценка «**хорошо**» — если обучающийся правильно выполнил большинство предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать мелкие ошибки.

Оценка **«удовлетворительно»** — если обучающийся выполнил более половины предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать негрубые ошибки.

Оценка **«неудовлетворительно»** — если обучающийся выполнил менее половины предложенных заданий, при этом в работе могут присутствовать

грубые ошибки, по выполненной работе отчет либо не составлен, либо составлен с грубыми ошибками.

Задание 8: Решение задач

Тема 6. Аппроксимация

Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03, ПК 1.1.

Инструкция: решить предложенные задачи.

Задача 1. Построить аппроксимирующий полином степени 2 для таблично заданной функции (таблица 1, 2).

Таблица 1 2 3 5 0 1 4 6 i1,1 1,7 2,4 3,0 3.7 4,5 5.1 5,8 x_i 0.3 0,6 1.1 1,7 2,3 3.0 3.8 4,6 y_i Таблица 2 5 0 2 3 4 6 7 i 1 1,3 x_i 0.2 0,5 0,9 1,7 1,7 1,9 2,2 2,72 0,66 0,95 1,61 4,55 5,20 5,92 8,73 y_i

Задача 2. Для таблично заданной функции (таблица 1) построить следующие аппроксимирующие полиномы. Вычислить качество приближения аппроксимирующего полинома и таблично заданной функции по критерию суммы квадратов отклонений.

1)
$$Q(x) = a_0 + a_1 \cdot x$$
;

2)
$$Q(x) = a_0 + a_1 \cdot x + a_2 \cdot x;$$

3)
$$Q(x) = a_0 + a_1 \cdot x + a_2 \cdot x + a_3 \cdot x$$
.

Задача 3. Для таблично заданной функции (таблица 2) построить следующие элементарные функции. Вычислить качество приближения элементарной функции и таблично заданной функции по критерию суммы квадратов отклонений.

$$1) Q(x) = a \cdot x + b;$$

2)
$$Q(x) = a \cdot x^b$$
;

3)
$$Q(x) = a \cdot e^{b \cdot x}$$
;

4)
$$Q(x) = \frac{1}{a \cdot x + b};$$

5)
$$Q(x) = a \cdot \ln(x) + b$$
;

6)
$$Q(x) = \frac{a}{x} + b;$$

7)
$$Q(x) = \frac{x}{a \cdot x + b}$$
.

Оценка «**отлично**» — если обучающийся правильно выполнил все предложенные задания.

Оценка «**хорошо**» – если обучающийся правильно выполнил большинство предложенных заданий, при этом в работе могут присутствовать мелкие ошибки.

Оценка **«удовлетворительно»** — если обучающийся выполнил более половины предложенных заданий, при этом в работе могут присутствовать негрубые ошибки.

Оценка **«неудовлетворительно»** — если обучающийся выполнил менее половины предложенных заданий, при этом в работе могут присутствовать грубые ошибки.

Задание 9: Практическая работа 5

Тема 7. Численное дифференцирование и интегрирование

Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03, ПК 1.1.

Инструкция: выполнить предложенные задания и оформить отчет о проделанной работе.

Текст задания:

Вычислить интеграл при n=10 методами:

- а) обобщенных формул прямоугольников;
- б) трапеции;
- в) Симпсона;
- г) Гаусса.

Вариант	Уравнение	Вариант	Уравнение
1	$\int_{0,6}^{1,4} \frac{\sqrt{x^2 + 5} dx}{2x + \sqrt{x^2 + 0.5}};$	14	$\int_{0.8}^{2.4} \frac{\sqrt{1.5x + 2.3} dx}{3 + \sqrt{0.3x + 1}};$
2	$\int_{0,4}^{1,2} \frac{\sqrt{0,5x+2}dx}{\sqrt{2x^2+1}+0,8};$	15	$\int_{1,9}^{2,6} \frac{\sqrt{2x+1,7}dx}{2,4+\sqrt{1,2x^2+0,6}};$
3	$\int_{0.8}^{1.8} \frac{\sqrt{0.8x^2 + 1}dx}{x + \sqrt{1.5x^2 + 2}};$	16	$\int_{0.5}^{1.9} \frac{\sqrt{0.7x^2 + 2.3}dx}{3.2 + \sqrt{0.8x + 1.4}};$

4	$\int_{1,0}^{2,2} \frac{\sqrt{1,5x+0,6}dx}{1,6+\sqrt{0,8x^2+2}};$	17	$\int_{1}^{2.6} \frac{\sqrt{0.4x + 3} dx}{0.7x + \sqrt{2x^2 + 0.5}};$
5	$\int_{1,2}^{2,0} \frac{\sqrt{2x^2 + 1,6}dx}{2x + \sqrt{0,5x^2 + 3}};$	18	$\int_{0,7}^{2,1} \frac{\sqrt{1,7x^2 + 0.5}dx}{1,4 + \sqrt{1,2x + 1.3}};$
6	$\int_{1,3}^{2,5} \frac{\sqrt{x^2 + 0.6} dx}{1.4 + \sqrt{0.8x^2 + 1.3}};$	19	$\int_{0.6}^{2.2} \frac{\sqrt{1.5x + 1} dx}{1.2x + \sqrt{x^2 + 1.8}};$
7	$\int_{1,2}^{2,6} \frac{\sqrt{0,4x+1,7}dx}{1,5x+\sqrt{x^2+1,3}};$	20	$\int_{1,2}^{3} \frac{\sqrt{2x^2 + 0.7} dx}{1.5 + \sqrt{0.8x + 1}};$
8	$\int_{0.8}^{1.6} \frac{\sqrt{0.3x^2 + 2.3}dx}{1.8 + \sqrt{2x + 1.6}};$	21	$\int_{1,3}^{2,7} \frac{\sqrt{1,3x^2 + 0,8}dx}{1,7x + \sqrt{2x + 0,5}};$
9	$\int_{1,2}^{2} \frac{\sqrt{0,6x+1,7}dx}{2,1x+\sqrt{0,7x^2+1}};$	22	$\int_{0.6}^{1.4} \frac{\sqrt{x^2 + 0.5} dx}{2x + \sqrt{x^2 + 2.5}};$
10	$\int_{0.8}^{2.4} \frac{\sqrt{0.4x^2 + 1.5} dx}{2.5 + \sqrt{2x + 0.8}};$	23	$\int_{0,4}^{1,2} \frac{\sqrt{2x^2 + 1}dx}{0.8x + \sqrt{0.5x + 2}};$
11	$\int_{1,2}^{2,8} \frac{\sqrt{1,2x+0,7}dx}{1,4x+\sqrt{1,3x^2+0,5}};$	24	$\int_{0.8}^{1.8} \frac{\sqrt{1.5x^2 + 2} dx}{x + \sqrt{0.8x^2 + 1}};$
12	$\int_{0,6}^{2,4} \frac{\sqrt{1,1x^2 + 0.9} dx}{1,6 + \sqrt{0,8x^2 + 1,4}};$	25	$\int_{1}^{2,2} \frac{\sqrt{0.8x^2 + 2}dx}{1.6 + \sqrt{1.5x + 0.6}}$
13	$\int_{0,7}^{2,1} \frac{\sqrt{0,6x+1,5}dx}{2x+\sqrt{x^2+3}};$		

Оценка «**отлично**» — если обучающийся правильно выполнил все предложенные задания и составил по выполненной работе полный отчет.

Оценка «**хорошо**» — если обучающийся правильно выполнил большинство предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать мелкие ошибки.

Оценка **«удовлетворительно»** — если обучающийся выполнил более половины предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать негрубые ошибки.

Оценка **«неудовлетворительно»** — если обучающийся выполнил менее половины предложенных заданий, при этом в работе могут присутствовать

грубые ошибки, по выполненной работе отчет либо не составлен, либо составлен с грубыми ошибками.

Задание 10: Практическая работа 6

Тема 7. Численные методы решения обыкновенных дифференциальных уравнений

Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03, ПК 1.1.

Инструкция: выполнить предложенные задания и оформить отчет о проделанной работе.

Текст задания:

Решить задачу Коши для обыкновенного дифференциального уравнения первого порядка на отрезке [0,2; 1,2] с шагом 0,1 при начальном условии y(0,2)=0,25 (вычисления выполнять с четырьмя десятичными знаками):

- 1) методом Эйлера;
- 2) Рунге-Кутта.

Вариант	Уравнение
1	$y' = 0.133 (x^2 + \sin 2x) + 0.872y$
2	$y'=0.215 (x^2+\cos 1.5x)+1.283y$
3	$y' = 0.158 (x^2 + \sin 0.8x) + 1.164y$
4	$y'=0.173 (x^2+\cos 0.7x)+0.754y$
5	$y' = 0.221 (x^2 + \sin 1.2x) + 0.452y$
6	$y'=0.163 (x^2+\cos 0.4x)+0.635y$
7	$y' = 0.218 (x^2 + \sin 1.6x) + 0.718y$
8	$y'=0.145 (x^2+\cos 0.5x)+0.842y$
9	$y' = 0.213 (x^2 + \sin 1.8x) + 0.368y$
10	$y'=0.127 (x^2+\cos 0.6x)+0.573y$

11	$y' = 0.232 (x^2 + \sin 1.4x) + 1.453y$
12	$y' = 0.417 (x^2 + \cos 0.8x) + 0.972y$
13	$y' = 0.324 (x^2 + \sin 1.5x) + 1.612y$
14	$y' = 0.263 (x^2 + \cos 1.2x) + 0.453y$
15	$y' = 0.372 (x^2 + \sin 0.7x) + 0.758y$
16	$y' = 0.343 (x^2 + \cos 0.4x) + 1.315y$
17	$y' = 0.276 (x^2 + \sin 1.6x) + 0.988y$
18	$y'=0.173 (x^2+\cos 0.6x)+1.534y$
19	$y' = 0.258 (x^2 + \sin 0.4x) + 0.724y$
20	$y'=0.317 (x^2+\cos 1.4x)+1.344y$
21	$y' = 0.166 (x^2 + \sin 1.1x) + 0.883y$
22	$y' = 0.215 (x^2 + \cos 0.9x) + 1.213y$
23	$y'=0.188 (x^2 + \sin 1.5x) + 0.885y$
24	$y'=0.314 (x^2+\cos 0.6x) + 0.772y$
25	$y'=0.418 (x^2 + \sin 1.2x) + 1.344y$

Оценка «**отлично**» — если обучающийся правильно выполнил все предложенные задания и составил по выполненной работе полный отчет.

Оценка «**хорошо**» — если обучающийся правильно выполнил большинство предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать мелкие ошибки.

Оценка **«удовлетворительно»** — если обучающийся выполнил более половины предложенных заданий и составил по выполненной работе отчет, при этом в работе могут присутствовать негрубые ошибки.

Оценка **«неудовлетворительно»** — если обучающийся выполнил менее половины предложенных заданий, при этом в работе могут присутствовать грубые ошибки, по выполненной работе отчет либо не составлен, либо составлен с грубыми ошибками.

Задание 11: Устный опрос

Тема 6. Аппроксимация

Проверяемые результаты обучения: ОК 01, ОК 02, ОК 03.

Инструкция: подготовиться к устному опросу по заданным темам.

Вопросы для устного опроса:

- 1. Постановка задачи аппроксимации.
- 2. Аппроксимация методом наименьших квадратов.
- 3. Аппроксимация элементарными функциями. Примеры.

Критерии оценивания:

Оценка «**отлично**» — на вопросы даны исчерпывающие ответы, проиллюстрированные наглядными примерами там, где это необходимо. Ответы изложены грамотно, все термины употреблены корректно, все понятия раскрыты верно.

Оценка «**хорошо**» — на вопросы даны в целом верные ответы, но с отдельными неточностями, не носящими принципиального характера. Не все термины употреблены правильно, присутствуют отдельные некорректные утверждения. Ответы не проиллюстрированы примерами в должной мере.

Оценка «удовлетворительно» – ответы на вопросы носят фрагментарный характер, верные выводы перемежаются неверными. Упущены содержательные блоки, необходимые ДЛЯ полного раскрытия темы. Обучающийся в целом ориентируется в теме, но испытывает проблемы с раскрытием конкретных вопросов.

Оценка «неудовлетворительно» — ответы на вопросы отсутствуют либо не соответствуют содержанию вопросов. Ключевые для темы понятия, содержащиеся в вопросах, трактуются ошибочно.

Теоретические вопросы к дифференцированному зачету

1. Понятие погрешности вычислений. Источники возникновения погрешности.

- 2. Виды погрешностей: неустранимая, погрешность метода, вычислительная погрешность.
 - 3. Этапы численного метода для заданной математической модели.
 - 4. Абсолютная и относительная погрешности. Формы их записи.
 - 5. Значащая цифра числа. Верная значащая цифра.
 - 6. Прямая и обратная задачи теории погрешности.
- 7. Определение алгебраического и трансцендентного уравнений. Понятие корня уравнения и существование его единственности.
- 8. Методы отделения и уточнения корней алгебраических и трансцендентных уравнений: графический, половинного деления.
 - 9. Отделение корней алгебраических и трансцендентных уравнений.
- 10. Уточнение корней алгебраических и трансцендентных уравнений методом простой итерации, Ньютона, комбинированный.
- 11. Уточнение корней алгебраических и трансцендентных уравнений методом Ньютона, комбинированный.
- 12. Уточнение корней алгебраических и трансцендентных уравнений комбинированным методом.
- 13. Прямые методы численного решения систем линейных алгебраических уравнений: Крамера, обратной матрицы, Гаусса, Жордана-Гаусса.
- 14. Итерационные методы численного решения систем линейных алгебраических уравнений: простой итерации, Зейделя. Скорость сходимости итерационного метода.
- 15. Итерационные методы решения систем нелинейных уравнений: простой итерации, Зейделя, Ньютона-Рафсона. Условия окончания итерационного процесса.
- 16. Понятие интерполирования и экстраполирования функции. Условие единственности решения задачи.
 - 17. Понятие интерполяционного полинома Лагранжа и его формула.
- 18. Понятие интерполяционного полинома Ньютона для равноотстоящих узлов. Конечные разности.
 - 19. Формулы интерполяционного полинома Ньютона I и II.
 - 20. Погрешность интерполяции.
- 21. Сплайн интерполяция. Достаточные условия существования сплайна степени не менее 2.
 - 22. Аппроксимация. Метод наименьших квадратов.
 - 23. Аппроксимация элементарными функциями.
- 24. Численное дифференцирование функций, заданных аналитически. Вычислительный алгоритм.

- 25. Численное дифференцирование таблично заданных функций с использованием интерполяционного полинома Ньютона.
 - 26. Численное интегрирование функций по формулам прямоугольников.
 - 27. Численное интегрирование функций по формуле трапеций.
 - 28. Численное интегрирование функций по формуле Симпсона.
 - 29. Численное интегрирование функций по формуле Гаусса.
- 30. Численные методы решения обыкновенных дифференциальных уравнений первого порядка. Теорема Пикара.
- 31. Методы решения дифференциального уравнения: уравнения п-го порядка: аналитические, графические, численные.
- 32. Решения дифференциального уравнения: уравнения n-го порядка. Метод итераций (Пикара).
- 33. Решения дифференциального уравнения: уравнения n-го порядка. Методы Эйлера и Рунге-Кутта.
- 34. Оценка погрешности численных методов решения обыкновенных дифференциальных уравнений.

Практические задания к дифференцированному зачету

- 1. Составить алгоритм решения методом деления отрезка пополам: $2x 4\cos(x) 0.6 = 0$ на [0.6;2].
- 2. Составить алгоритм решения методом деления отрезка пополам: $3\cos(2x)-x+0.25=0$ на [-2.0;-1.8].
- 3. Составить алгоритм решения методом простых итераций: $e^x + \sin(2x) + 0.5 = 0$ на [-8;-7].
- 4. Составить алгоритм решения методом простых итераций: $3\cos(2x) x + 0.25 = 0$ на [0.5;0.75]
- 5. Составить алгоритм решения методом простых итераций: $2x 4\cos(x) 0.6 = 0$ на [0.6;2].
- 6. Составить алгоритм решения методом Ньютона: $3\cos(2x) x + 0.25 = 0$ на [-2.0; -1.8].
- 7. Составить алгоритм решения методом Ньютона: $2x 4\cos(x) 0.6 = 0$ на [0.6;2].
- 8. Составить алгоритм решения модифицированным методом Ньютона: $2x 4\cos(x) 0.6 = 0$ на [0.6;2].
- 9. Составить алгоритм решения системы методом простых итераций:

$$\begin{cases} 4x + y - 1.5z = -0.5; \\ 2x - 5y + \frac{5}{8}z = -4.375; \\ -x - y + 3z = 2. \end{cases}$$

10. Составить алгоритм решения системы методом простых итераций:

$$\begin{cases} 5x - y - z = 3; \\ 6x - 8y + z = -1; \\ 2x - 3y + 10z = 9. \end{cases}$$

11. Составить алгоритм решения системы методом простых итераций:

$$\begin{cases} 6.8x - 2y - 2z = -4; \\ 2x - 5y + z = -4; \\ 1.2x - 0.6y + 2z = 1.4. \end{cases}$$

12. Составить алгоритм решения системы методом Зейделя:

$$\begin{cases} 5x + 0.5y + \frac{5}{8}z = 5; \\ 2.8x - \frac{141}{9}y + z = 2.8; \\ 6x - y - 8z = 6. \end{cases}$$

- 13. Составить алгоритм решения системы $\begin{cases} x+y-1=0;\\ y-x^2-1=0 \end{cases}$ методом простых итераций с начальным приближением (1,1).
 - 14. Построить интерполяционную формулу Лагранжа:

$$f(x) = \frac{8.8}{\sqrt{\pi}} e^{\frac{2x+3}{x^2+1}}.$$

15. Построить интерполяционную формулу Лагранжа:

$$f(x)=2.4\cos e^{-\frac{x}{3}}$$
.

16. Построить І интерполяционную формулу Ньютона:

$$f(x) = \frac{e^{\sqrt{3x+7}}}{x^2+1}$$
.

17. Построить І интерполяционную формулу Ньютона:

$$f(x) = \frac{19}{\pi} e^{(x+1)^2}$$

18. Построить II интерполяционную формулу Ньютона:

$$f(x)=2.4\cos e^{-\frac{x}{3}}$$
.

19. Построить алгоритм получения сплайна первого порядка:

$$f(x)=2.4\cos e^{-\frac{x}{3}}.$$

- 20. Построить алгоритм получения сплайна первого порядка: $15tg\left(1+2x^2\right)$
- 21. Построить алгоритм получения сплайна третьего порядка:

$$f(x)=2.4\cos e^{-\frac{x}{3}}.$$

- 22. Построить алгоритм получения сплайна третьего порядка $\frac{e^{\sqrt{3x+7}}}{x^2+1}$.
- 23. Составить алгоритм построения аппроксимационного полинома методом наименьших квадратов:

$$f(x)=2.4\cos e^{-\frac{x}{3}}.$$

24. Составить алгоритм решения дифференциального уравнения методом Эйлера:

$$\frac{dy}{dx} = (x-1)y$$
, $y(-2) = -2$ на $[-2,-1]$.

25. Построить алгоритм получения численного решения дифференциального уравнения методом Рунге-Кутта:

$$\frac{dy}{dx} = (x-1)y, y(-2) = -2 \text{ Ha } [-2,-1].$$

Критерии оценивания на дифференцированном зачете

Традиционная	Критерий выставления		
оценка			
Отлично	теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко		
Хорошо	теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками		
Удовлетворительно	теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство		

	предусмотренных программой обучения учебных		
	заданий выполнено, некоторые из выполненных		
	заданий содержат ошибки		
	теоретическое содержание курса не освоено,		
Неудовлетворительно	необходимые умения не сформированы, выполненные		
	учебные задания содержат грубые ошибки		